TECHNICAL NOTE

Polymorphic microsatellite loci from Brazilian and Hooded slipper lobsters (*Scyllarides brasiliensis* and *S. deceptor*), and cross-amplification in other scyllarids

Ghennie T. Rodríguez-Rey · Haydée A. Cunha · Cristiano Lazoski · Antonio M. Solé-Cava

Received: 21 April 2013 / Accepted: 6 May 2013 © Springer Science+Business Media Dordrecht 2013

Abstract We isolated and characterized the first polymorphic microsatellite for the Brazilian and Hooded slipper lobsters species (*Scyllarides brasiliensis* and *S. deceptor*). Thirteen polymorphic loci (2–31 alleles/locus, $H_o = 0.056-0.975$, $H_e = 0.155-0.958$), were characterized in *S. brasiliensis* (N = 40). Twelve polymorphic loci (3–22 alleles/locus, $H_o = 0.333-0.900$, $H_e = 0.337-0.940$), were characterized in *S. deceptor* (N = 30) from different localities on the Brazilian coast. These loci were also tested in four scyllarid lobsters, *Scyllarides aequinoctialis*, *S. delfosi*, *Scyllarus depressus* and *Parribacus antarcticus*.

Keywords SSR markers · Population structure · Scyllaridae

Slipper lobsters (Scyllaridae) were generally categorized as of minor economic importance in comparison to clawed (Nephropidae) or spiny lobsters (Palinuridae), and this has resulted in inadequate management regulations for slipper lobsters fisheries (Lavalli and Spanier 2007). However, in

G. T. Rodríguez-Rey \cdot H. A. Cunha \cdot C. Lazoski (\boxtimes) \cdot

A. M. Solé-Cava

Laboratório de Biodiversidade Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro 21941-590, Brazil e-mail: lazoski@acd.ufrj.br

G. T. Rodríguez-Rey

Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, Brazil

H. A. Cunha

Laboratório de Mamíferos Aquáticos e Bioindicadores (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, Brazil response to overfishing of spiny lobsters over the last 10 years, fishing pressure over slipper lobsters has increased (Groeneveld et al. 2006; Phillips and Melville-Smith 2006), leading to a significant decrease in their relative abundance where they have been the target of a local fishery (Duarte et al. 2010; Spanier and Lavalli 2007). Among all scyllarid lobsters from the Western Atlantic, the Brazilian and Hooded slipper lobsters (*Scyllarides brasiliensis* and *S. deceptor*) are the main species caught, with *S. brasiliensis* being captured mostly in northeast Brazil (Pernambuco and Alagoas States) and *S. deceptor* in south and southeast Brazil (Rio de Janeiro to Santa Catarina States) (Duarte et al. 2010; Santos and Freitas 2002). We present new highly polymorphic microsatellite loci to help population genetics studies that will be useful for their management and conservation.

Microsatellite loci for S. brasiliensis and S. deceptor were isolated from enriched genomic libraries (Bloor et al. 2001). Genomic DNA was obtained from muscle tissue by a salt extraction (Miller et al. 1988). For each species, a pool of high-quality genomic DNA (10 µg) was digested with SauIIIA and ligated to phosphorylated double-stranded linkers. Fragments (400-1,000 bp) were hybridized with biotinylated (CA)₁₂ and (CAA)₈ probes, and isolated using streptavidin-coated magnetic beads. The DNA containing microsatellites was amplified by PCR with the forward linker oligo as a primer. Enriched fragments were cloned using pGEM-T vectors and One Shot TOP10 competent cells. The presence of microsatellite inserts in the recombinant clones was confirmed by double banded PCR products after amplification using the forward linker oligo and (nonbiotinylated) microsatellite oligos as primers. Seventy-six positive clones, for each species, were amplified using M13 universal primers and subsequently sequenced in both directions in an ABI3500 sequencer. Sequences were edited with SeqMan II 4.0 (DNAstar Inc.).

Locus/GenBank	Repeat motif	Primer sequence $(5'-3')$	S. bras	iliensis	S. deceptor	
			T_a^a	$MgCl_2^b$	T_a^a	MgCl ₂ ^b
Sbra05	(AC) ₁₀	F: TGAATGGGTATCTGGCGTAA	60	2.5	60	2.5
KC893319		R: CTTGGGTGGTAGGTATGGCT				
Sbra06	(AC) ₁₃	F: CATTGATAAAGGGCACACAT	59	3.0	54	2.5
KC893320		R: ATTGGGCAGGTGTGTATATG				
Sbra10	(AC) ₅	F: CTCCACTCAACACAACCAA	60	2.5	_	_
KC893321		R: GTGATTCCGAGGACTTGCAT				
Sbra11	(TG) ₇ (AG) ₁₁ (TG) ₁₀	F: CCAGAACTAACGGCCTTCT	60	2.5	60	2.5
KC893322		R: ATGTAACGGTGGGAGGTAA				
Sbra13	(TG) ₅ C(GT) ₆	F: ACTAGATTGGTGGGTCGCA	60	2.5	60	2.5
KC893323		R: TGATTGCAGAGCATGTAGGC				
Sdec02	(CA) ₉	F: ATGTAACTCCGGGCAAGA	60	3.0	60	3.0
KC893324		R: CATCTTGGCTTAATTGACG				
Sdec03	(GT) ₁₁	F: TAGACACGACTGGAGGATCTTG	_	_	60	2.5
KC893325		R: GTGTAAAACTCTCGCCCTGTAA				
Sdec06	$(CA)_{10}CG(CA)_8$	F: TGTCCAAACACTACACGCAT	_	_	60	2.5
KC893326		R: CTTCACATCCTTTCCGACAC				
Sdec07	(AC) ₁₁	F: TGACATTCACACTTTCACCCA	60	2.5	60	2.5
KC893327		R: GCATGTTTGTTGCAGCTTGT				
Sdec08	(CA) ₁₃	F: AGACACGCACACACCTACA	-	_	60	3.0
KC893328		R: GAAAGTACCTCTGACATGCG				
Sdec10	(TG) ₈	F: GTGAGTGATTGTGTGAGTGTG	60	2.5	60	2.5
KC893329		R: CGATAGAGCTTCACGAATATG				
Sdec14	(TG) ₂₀	F: TCACAGATAACACCATCTTGCC	56	3.0	60	2.5
KC893330		R: TGTATGACAGAAGCGTGAGGTT				
Sdec17	(CAA) ₄	F: CACAACATCACCGAGACACTTA	60	2.5	60	2.5
KC893331		R: GCTACACTCTTGTTCCTTGTCG				
Sdec20	(TG) ₁₁	F: CGCTCACCGTACATCTGGTA	56	2.5	60	3.0
KC893332		R: AATCCAAACACACAGGCA				
Sdec21	(TG) ₁₀	F: CAGCCTAAGGCAGGGTTAAA	60	2.5	60	2.5
KC893333		R: CGTTTATCTCGGGGGTTCTTG				
Sdec23	(GT) ₁₀	F: CACTATGCCAACCTTTCGGT	60 ^c	3.0	58	3.0
KC893334		R: AACGCTGGTAGGTAGGCTGA				

Table 1 Microsatellite loci developed for Scyllarides brasiliensis and S. deceptor

^a Annealing temperature of the PCR reaction in °C

^b Concentration of MgCl₂ in mM

^c Addition of the labeled M13 primer during the final cycles

Of the 76 clones sequenced for each species, 23 and 26 distinct microsatellite loci were identified for *S. brasiliensis* and *S. deceptor*, respectively. From those, 14 primer pairs for *S. brasiliensis* (Sbra) and 23 for *S. deceptor* (Sdec) were designed using *WebSat* (Martins et al. 2009). The tailed primer method was used (Schuelke 2000). All 37 primer pairs were tested in both species. PCR consisted of 1 U GoTaq, 0.2 mM of each dNTP, 2.5 mM or 3.0 mM MgCl₂, 5 μ g BSA, 0.13 μ M of forward tailed primer, 0.26 μ M of labeled M13 primer (with 6-FAM, VIC, NED or PET), and 0.5 μ M of reverse primer, in 15 μ L reactions with

approximately 30 ng of DNA template. Cycling conditions were: 94 °C, 5 min, $30 \times [93 °C, 45; T_a$ (between 54 and 64 °C), 45 s; 72 °C, 45 s], $8 \times [93 °C, 45 s; 53 °C, 45 s, 72 °C, 45 s]$, 72 °C, 30 min. Due to the presence of unspecific products in Sdec23 in *S. brasiliensis*, re-amplification of this locus was done interrupting the cycling for the addition of the labeled M13 primer during the final cycles (de Arruda et al. 2010). In total, sixteen primer pairs were optimized, of which thirteen primers amplified successfully for *S. brasiliensis* and fifteen for *S. deceptor* (Table 1).

Table 2 Characterization of microsatellite loci developed for Scyllarides brasiliensis and S. deceptor and cross-amplification in other scyllarids

Locus	S. brasiliensis							S. deceptor								
	N	N_a	Size range (bp)	H _o _H _e		$P_{\rm HWE}$	Null freq.	N	N_{a}	Size ra	ange (bp)	Ho	H _e		$P_{\rm HWE}$	Null freq.
Sbra05	40	6	222–236	0.725-0.73).725–0.739 0.320		0.017	20	1	212		_			_	-
Sbra06	38	13	127-157	0.553-0.878		0.001* 0.168		30	1	137		_			_	_
Sbra10	40	6	212-224	0.525-0.72	0.525-0.726		0.112	_	_	_		-			-	-
Sbra11	40	31	139–211	0.975-0.958		1.000 0		30	22	149–203		0.833-0.940		0	0.047	0.047
Sbra13	39	3	196-200	0.179-0.22	9	0.042	0.038	30	6	184–2	02	0.9	00–0.73	7	0.319	0
Sdec02	40	2	126–128	0.275-0.45	3	0.029	0.119	30	6	131-1	43	0.4	00-0.79	1	0.001*	0.213
Sdec03	-	-	-	-		-	-	30	7	150-1	64	0.7	33-0.76	5	0.115	0.011
Sdec06	_	_	-	-		-	-	30	10	191–2	21	0.8	33-0.868	8	0.629	0.011
Sdec07	40	19	162-206	0.625-0.91	7	0.001**	0.147	30	11	163–1	95	0.7	33-0.75	7	0.463	0.006
Sdec08	-	-	-	-		-	-	30	10	162-1	96	0.8	33-0.818	8	0.976	0
Sdec10	36	2	159–161	0.056-0.15	5	0.009	0.084	30	1	159			-		_	-
Sdec14	40	3	236–248	0.300-0.26	5	1.000	0	30	13	258-2	90	0.8	33-0.823	3	0.541	0
Sdec17	39	2	335–338	0.179-0.16	6	1.000	0	30	3	335-3	41	0.3	33–0.33	7	1.000	0
Sdec20	40	13	281-307	0.800-0.84	3	0.115	0.018	30	5	289–2	99	0.5	67–0.629	9	0.316	0.032
Sdec21	40	5	217–233	0.650-0.56	69	0.689	0	30	7	219–2	35	0.5	67–0.649	9	0.169	0.043
Sdec23	35	3	168–172	0.057-0.25	5	0.001**	0.155	30	5	158–1	74	0.8	33–0.692	2	0.186	0
Locus	S. aequinoctialis		S. de	S. delfosi			Scyllarus depressus				Parribacus antarticus					
	Ta	1	N _a Size range ((bp) T _a	Ν	a Size	range (bp)	Ta	N	l _a Siz	ze range (op)	T_{a}	Na	Size	range (bp)
Sbra05	58	2	2 224–226	58	3	212-	-228	_	_		_		-	_	-	-
Sbra06	_			54	1	157		-	_		-		_	_	-	-
Sbra10	60	2	2 228–258	60	2	224-	-258	56	1		298		_	_	-	-
Sbra11	60	2	2 143–151	60	1	149		-	_		-		_	_	-	-
Sbra13	60	2	2 190–192	60	2	202-	-210	-	_		-		56	3	192-	-212
Sdec02	60	1	139	60	4	139-	-145	-	_		-		_	_	-	-
Sdec03	60	2	4 150–172	60	3	122-	-152	54	1		130		_	_	-	-
Sdec06	58	3	3 173–195	58	2	199-	-205	-	_		-		_	_	-	-
Sdec07	60	1	l 175	60	1	175		56	4	16	9–207		56	2	173-	-187
Sdec08	_			_	_	-	-	_	_		-		_	_	-	-
Sdec10	60	2	2 157–173	60	2	161-	-163	-	_		-		_	_	-	-
Sdec14	60	2	4 244–282	60	3	248-	-282	_	_		-		_	_	-	-
Sdec17	60	3	3 343-357	60	1	343		50	1		337		50	1	349	
Sdec20	_	-		-	_	-	-	_	-		-		-	_	-	-
Sdec21	54	. 2	2 207–225	60	1	235		_	-		-		50	2	271-	-353
Sdec23	60	2	2 162–164	60	2	174-	-176	50	1		194		50	1	128	

N, number of genotyped individuals; N_a , number of alleles observed; *size range (bp)*, size range of alleles in base pairs; H_o , observed heterozygosity; H_e , expected heterozygosity; P_{HWE} , *P* value of the HWE test; *null freq*, null allele frequency; T_a , annealing temperature of the PCR reaction in °C. Amplification failure is indicated by a minus

* Locus is not in HWE (P < 0.05). ** These heterozygote deficiencies were likely due to Wahlund effect, see text for details

Polymorphism levels were evaluated in *S. brasiliensis* (Bahia: N = 20; Espírito Santo: N = 20) and *S. deceptor* (Rio de Janeiro: N = 20; Santa Catarina: N = 10). PCR products were pooled with GS500-LIZ and separated in an ABI3500 sequencer. Allele size calling was performed with the program *GeneMarker* 2.2.0 (SoftGenetics), and the allelic binning was done with *Autobin* 0.9 (Salin 2010).

All loci were polymorphic for *S. brasiliensis*, and twelve were polymorphic for *S. deceptor*. (Table 2). Summary statistics were calculated using the program *Genepop* 4.0 (Raymond and Rousset 1995). No linkage disequilibrium was detected between any loci pair in either species. Significant departures (P < 0.05 after sequential Bonferroni correction—Rice 1989) from Hardy–Weinberg equilibrium were found in three loci (Sbra06, Sdec07 and Sdec23) of *S. brasiliensis* and one locus (Sdec02) of *S. deceptor*. To verify if the deviations were due to Wahlund effect, deviations from expected HWE were tested separately for each locality. With this approach, only the loci Sbra06 in *S. brasiliensis* and Sdec02 in *S. deceptor* continued to show a clear heterozygote deficiency. The deficiencies were possibly caused by the presence of null alleles, whose estimated frequencies, using *Micro-Checker* 2.2.3 (van Oosterhout et al. 2004), were higher than 11 %. No evidence of scoring errors due to stuttering or large-allele dropout was found.

Cross-amplification was tested in four scyllarid lobsters, Scyllarides aequinoctialis, S. delfosi, Scyllarus depressus and Parribacus antarcticus (Table 2). Two individuals of each species were analyzed using a Qiaxcel System (Qiagen) with high resolution capillaries. Cross-amplification in species from different genera was very poor, with only five loci amplifying in S. depressus and P. antarcticus. Contrastingly, amplification in congeneric species was very efficient, with 13 loci amplifying in Scyllarides aequinoctialis and 14 loci in S. delfosi.

The microsatellite markers developed have wide applicability in studies on *Scyllarides* lobsters population structure and may provide valuable information for effective management and monitoring of these species.

Acknowledgments We thank N. P. Cavaleiro and A. V. Vasconcellos for assistance during microsatellite development. Financial support was provided by Brazilian Ministries for Fisheries (MPA) and Science (MCTI), CNPq, CAPES, and FAPERJ.

References

Bloor PA, Barker FS, Watts PC, Noyes HA, Kemp SJ (2001) Microsatellite libraries by enrichment. http://www.genomics.liv. ac.uk/animal/MICROSAT.PDF. Accessed 31 March 2013

- de Arruda MP, Gonçalves EC, Schneider MP, da Silva AL, Morielle-Versute E (2010) An alternative genotyping method using dyelabeled universal primer to reduce unspecific amplifications. Mol Biol Rep 37:2031–2036
- Duarte LFA, Severino-Rodrigues E, Gasalla MA (2010) Slipper lobster (Crustacea, Decapoda, Scyllaridae) fisheries off the southeastern coast of Brazil: I. Exploitation patterns between 23°00′ and 29°65′ S. Fish Res 102:141–151
- Groeneveld JC, Goñi R, Latrouite D (2006) *Palinurus* species. In: Phillips BF (ed) Lobsters: biology, management, aquaculture and fisheries. Blackwell Publishing Ltd, Oxford, pp 385–411
- Lavalli KL, Spanier E (2007) Introduction to the biology and fisheries of slipper lobsters. In: Lavalli KL, Spanier E (eds) The biology and fisheries of slipper lobster. CRC Press, Florida, pp 3–24
- Martins WS, Lucas DCS, Neves KFS, Bertioli DJ (2009) WebSat—a web software for microsatellite marker development. Bioinformation 3:282–283
- Miller SA, Dykes DD, Polesky HF (1988) A simple salting procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:215
- Phillips BF, Melville-Smith R (2006) *Panulirus* species. In: Phillips BF (ed) Lobsters: biology, management, aquaculture and fisheries. Blackwell Publishing Ltd, Oxford, pp 359–384
- Raymond M, Rousset F (1995) GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249
- Rice WR (1989) Analyzing tables of statistical test. Evolution 43:223-225
- Salin F (2010) Autobin v0.9. http://www4.bordeaux-aquitaine.inra. fr/biogeco/Ressources/Logiciels/Autobin. Accessed 31 March 2013
- Santos MCF, Freitas AETS (2002) Estudo sobre a lagosta sapata Scyllarides brasiliensis Rathbun, 1906 (Crustacea: Decapoda: Scyllaridae) no litoral dos estados de Pernambuco e Alagoas— Brasil. Bol Técn Cient CEPENE 10:123–143
- Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234
- Spanier E, Lavalli KL (2007) Slipper lobster fisheries—present status and future perspectives. In: Lavalli KL, Spanier E (eds) The biology and fisheries of the slipper lobster. CRC Press, Florida, pp 377–391
- van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538